Groupe fondamental

En mathématiques, et plus spécifiquement en topologie algébrique, le groupe fondamental, ou groupe de Poincaré, est un invariant topologique. Le groupe fondamental d'un espace topologique pointé (X, d) est, par définition, l'ensemble des classes d'homotopie de lacets (chemins fermés) de X de base d. C'est un groupe dont la loi de composition interne est induite par la concaténation (juxtaposition) des arcs[1].

L'examen des groupes fondamentaux permet de prouver que deux espaces particuliers ne peuvent être homéomorphes (c'est-à-dire topologiquement équivalents). Le groupe fondamental permet de classifier les revêtements d'un espace connexe par arcs, à un isomorphisme près.

Une généralisation des groupes fondamentaux est la suite des groupes d'homotopie supérieurs. Pour cette raison, le groupe fondamental est aussi appelé premier groupe d'homotopie[2].

Le groupe fondamental fut introduit par Henri Poincaré dans la douzième section de son article Analysis Situs, paru en 1895 et annoncé dans une note aux Comptes rendus de l'Académie des sciences, parue en 1892[3].

  1. Andrew H. Wallace, Introduction à la topologie algébrique, Paris, Gauthier-Villars, , p. 73 (chapitre 4 : Le groupe fondamental)
  2. Pierre Dolbeault, Analyse complexe, Masson, , p. 120.
  3. (en) J. Dieudonné, A History of Algebraic and differential Topology, 1900-1960, p. 17-24.

Developed by StudentB